Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2386, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493205

RESUMO

Charge density waves (CDWs) involved with electronic and phononic subsystems simultaneously are a common quantum state in solid-state physics, especially in low-dimensional materials. However, CDW phase dynamics in various dimensions are yet to be studied, and their phase transition mechanism is currently moot. Here we show that using the distinct temperature evolution of orientation-dependent ultrafast electron and phonon dynamics, different dimensional CDW phases are verified in CuTe. When the temperature decreases, the shrinking of c-axis length accompanied with the appearance of interchain and interlayer interactions causes the quantum fluctuations (QF) of the CDW phase until 220 K. At T < 220 K, the CDWs on the different ab-planes are finally locked with each other in anti-phase to form a CDW phase along the c-axis. This study shows the dimension evolution of CDW phases in one CDW system and their stabilized mechanisms in different temperature regimes.

2.
Nat Commun ; 15(1): 653, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253575

RESUMO

Transition metal dichalcogenides, by virtue of their two-dimensional structures, could provide the largest active surface for reactions with minimal materials consumed, which has long been pursued in the design of ideal catalysts. Nevertheless, their structurally perfect basal planes are typically inert; their surface defects, such as under-coordinated atoms at the surfaces or edges, can instead serve as catalytically active centers. Here we show a reaction probability > 90 % for adsorbed methanol (CH3OH) on under-coordinated Pt sites at surface Te vacancies, produced with Ar+ bombardment, on layered PtTe2 - approximately 60 % of the methanol decompose to surface intermediates CHxO (x = 2, 3) and 35 % to CHx (x = 1, 2), and an ultimate production of gaseous molecular hydrogen, methane, water and formaldehyde. The characteristic reactivity is attributed to both the triangular positioning and varied degrees of oxidation of the under-coordinated Pt at Te vacancies.

3.
Adv Sci (Weinh) ; 10(17): e2300845, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37132589

RESUMO

Plumbene, with a structure similar to graphene, is expected to possess a strong spin-orbit coupling and thus enhances its superconducting critical temperature (Tc ). In this work, a buckled plumbene-Au Kagome superstructure grown by depositing Au on Pb(111) is investigated. The superconducting gap monitored by temperature-dependent scanning tunneling microscopy/spectroscopy shows that the buckled plumbene-Au Kagome superstructure not only has an enhanced Tc with respect to that of a monolayer Pb but also possesses a higher value than what owned by a bulk Pb substrate. By combining angle-resolved photoemission spectroscopy with density functional theory, the monolayer Au-intercalated low-buckled plumbene sandwiched between the top Au Kagome layer and the bottom Pb(111) substrate is confirmed and the electron-phonon coupling-enhanced superconductivity is revealed. This work demonstrates that a buckled plumbene-Au Kagome superstructure can enhance superconducting Tc and Rashba effect, effectively triggering the novel properties of a plumbene.

4.
ACS Appl Mater Interfaces ; 15(12): 16153-16161, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36802501

RESUMO

Layered transition metal dichalcogenides (TMDs) are two-dimensional materials exhibiting a variety of unique features with great potential for electronic and optoelectronic applications. The performance of devices fabricated with mono or few-layer TMD materials, nevertheless, is significantly affected by surface defects in the TMD materials. Recent efforts have been focused on delicate control of growth conditions to reduce the defect density, whereas the preparation of a defect-free surface remains challenging. Here, we show a counterintuitive approach to decrease surface defects on layered TMDs: a two-step process including Ar ion bombardment and subsequent annealing. With this approach, the defects, mainly Te vacancies, on the as-cleaved PtTe2 and PdTe2 surfaces were decreased by more than 99%, giving a defect density <1.0 × 1010 cm-2, which cannot be achieved solely with annealing. We also attempt to propose a mechanism behind the processes.

5.
Front Public Health ; 8: 558283, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194960

RESUMO

Anaplasma phagocytophilum subverts neutrophil function permitting intracellular survival, propagation and transmission. Sustained pro-inflammatory response, recruitment of new host cells for population expansion, and delayed apoptosis are associated with prolonged nuclear presence of NF-κB. We investigated NF-κB signaling and transcriptional activity with A. phagocytophilum infection using inhibitors of NF-κB signaling pathways, and through silencing of signaling pathway genes. How inhibitors or silencing affected A. phagocytophilum growth, inflammatory response (transcription of the κB-enhanced genes CXCL8 and MMP9), and NF-κB signaling pathway gene expression were tested. Among A. phagocytophilum-infected HL-60 cells, nuclear NF-κB p50, p65, and p52 were detected by immunoblots or iTRAQ proteomics. A. phagocytophilum growth was affected most by the IKKαß inhibitor wedelolactone (reductions of 96 to 99%) as compared with SC-514 that selectively inhibits IKKß, illustrating a role for the non-canonical pathway. Wedelolactone inhibited transcription of both CXCL8 (p = 0.001) and MMP9 (p = 0.002) in infected cells. Compared to uninfected THP-1 cells, A. phagocytophilum infection led to >2-fold down regulation of 64 of 92 NF-κB signaling pathway genes, and >2-fold increased expression in only 4. Wedelolactone and SC-514 reversed downregulation in all 64 and 45, respectively, of the genes down-regulated by infection, but decreased expression in 1 gene with SC-514 only. Silencing of 20 NF-κB signal pathway genes increased bacterial growth in 12 (IRAK1, MAP3K1, NFKB1B, MAP3K7, TICAM2, TLR3, TRADD, TRAF3, CHUK, IRAK2, LTBR, and MALT1). Most findings support canonical pathway activation; however, the presence of NFKB2 in infected cell nuclei, selective non-canonical pathway inhibitors that dampen CXCL8 and MMP9 transcription with infection, upregulation of non-canonical pathway target genes CCL13 and CCL19, enhanced bacterial growth with TRAF3 and LTBR silencing provide evidence for non-canonical pathway signaling. Whether this impacts distinct inflammatory processes that underlie disease, and whether and how A. phagocytophilum subverts NF-κB signaling via these pathways, need to be investigated.


Assuntos
Anaplasma phagocytophilum , Ehrlichiose/imunologia , NF-kappa B , Transdução de Sinais , Anaplasma phagocytophilum/genética , Células HL-60 , Humanos , Quinase I-kappa B/metabolismo , NF-kappa B/genética , Fator 3 Associado a Receptor de TNF
6.
J Clin Microbiol ; 51(9): 2931-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23804387

RESUMO

Molecular diagnosis of malaria offers many potential advantages over microscopy, including identification of malaria to the species level in an era with few experienced microscopists. We developed high-throughput multiplex 5' nuclease quantitative PCR (qPCR) assays, with the potential to support large studies, to specifically identify Plasmodium falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi. We compared qPCR to microscopy and confirmed discordant results with an alternative target PCR assay. The assays specifically detected 1 to 6 parasites/µl of blood. The clinical sensitivities (95% confidence intervals [CIs]) of the 4-plex assay to detect microscopically confirmed malaria were 95.8% (88.3 to 99.1%) for P. falciparum, 89.5% (75.2 to 97.1%) for P. vivax, 94.1% (71.3 to 99.9%) for P. ovale, and 100% (66.4 to 100%) for P. malariae. The specificities (95% CIs) were 98.6% (92.4 to 100%) for P. falciparum, 99% (84.8 to 100%) for P. vivax, 98.4% (94.4 to 99.8%) for P. ovale, and 99.3% (95.9 to 100%) for P. malariae. The clinical specificity for samples without malaria was 100%. The clinical sensitivity of the 5-plex assay for confirmed P. knowlesi malaria was 100% (95% CI, 69.2 to 100%), and the clinical specificity was 100% (95% CI, 87.2 to 100%). Coded retesting and testing with an alternative target PCR assay showed improved sensitivity and specificity of multiplex qPCR versus microscopy. Additionally, 91.7% (11/12) of the samples with uncertain species by microscopy were identified to the species level identically by both our multiplex qPCR assay and the alternative target PCR assay, including 9 P. falciparum infections. Multiplex qPCR can rapidly and simultaneously identify all 5 Plasmodium species known to cause malaria in humans, and it offers an alternative or adjunct to microscopy for clinical diagnosis as well as a needed high-throughput tool for research.


Assuntos
Malária/diagnóstico , Malária/parasitologia , Técnicas de Diagnóstico Molecular/métodos , Reação em Cadeia da Polimerase Multiplex/métodos , Plasmodium/classificação , Plasmodium/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Estudos de Coortes , Humanos , Malária/epidemiologia , Epidemiologia Molecular/métodos , Plasmodium/genética , Sensibilidade e Especificidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...